Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.652
Filtrar
1.
HLA ; 103(4): e15440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605657

RESUMO

Single nucleotide polymorphisms (SNPs) of HLA-E are related to the occurrence of many diseases, but their functions remain unclear. In this study, the function of SNPs at HLA-E rs76971248 and rs1264457 on the myeloid leukemia cells was analyzed by a progressive procedure, included genotyping, mRNA transcription, regulatory element, protein expression, and anti-tumor effect. The frequencies of rs76971248 G and rs1264457 G were found higher in myeloid leukemia patients than those in healthy blood donors (p < 0.05). For myeloid leukemia, rs76971248 T was protective, while rs1264457 G was susceptible. We also found that rs76971248 affected HLA-E mRNA transcription and membrane HLA-E (mHLA-E) expression in K562 cells through differently binding to transcription factor HOXA5 (p < 0.0001), while rs1264457 affected mHLA-E expression by changing mRNA transcription and an encoding amino acid (p < 0.01). In contrast, the expression of soluble HLA-E (sHLA-E) was not influenced by both rs1264457 and rs76971248. The higher HLA-E expression was detected among myeloid leukemia patients, and the K562 cells with higher HLA-E molecules played a significant inhibitory effect on the killing activity of NK-92MI cells (p < 0.05). In conclusion, the higher HLA-E expression of myeloid leukemia cells is promoted by rs76971248 G and rs1264457 G, which helps escape from NK-92MI cells' killing.


Assuntos
Leucemia Mieloide , Polimorfismo de Nucleotídeo Único , Humanos , 60617 , Alelos , Antígenos de Histocompatibilidade Classe I/genética , Leucemia Mieloide/genética , RNA Mensageiro/genética
2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579189

RESUMO

BACKGROUND AND OBJECTIVES: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS: We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS: Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQß1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION: Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Cadeias beta de HLA-DQ , Helicase IFIH1 Induzida por Interferon , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/genética , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos HLA-A/genética , Cadeias beta de HLA-DQ/genética , Helicase IFIH1 Induzida por Interferon/genética
3.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
4.
PLoS One ; 19(4): e0281698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593173

RESUMO

Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.


Assuntos
Doenças Hematológicas , Antígenos de Histocompatibilidade Classe I , Humanos , Frequência do Gene , Alelos , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Genótipo , Antígenos de Histocompatibilidade Classe I/genética , Doenças Hematológicas/genética , Haplótipos , Predisposição Genética para Doença
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38602320

RESUMO

Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Antígenos de Histocompatibilidade Classe I , Síndromes Neoplásicas Hereditárias , Neoplasias de Mama Triplo Negativas , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Mutação , Perfilação da Expressão Gênica
6.
HLA ; 103(4): e15457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575368

RESUMO

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


Assuntos
DNA , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Regiões 3' não Traduzidas , Alelos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Éxons/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo
7.
Sci Rep ; 14(1): 7966, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575727

RESUMO

The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.


Assuntos
COVID-19 , Linfócitos T , Humanos , Austrália , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Variação Genética , COVID-19/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade , Alelos
8.
Nat Commun ; 15(1): 2288, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480730

RESUMO

Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Glicoproteína da Espícula de Coronavírus , Cromatografia Líquida , Antígenos de Histocompatibilidade Classe I/genética
9.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474281

RESUMO

As the principal ligand for NKG2D, MICA elicits the recruitment of subsets of T cells and NK cells in innate immunity. MICA gene variants greatly impact the functionality and expression of MICA in humans. The current study evaluated whether MICA polymorphisms distinctively influence the pathogenesis of psoriasis (PSO), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) in Taiwanese subjects. The distributions of MICA alleles and levels of serum soluble NKG2D were compared between healthy controls and patients with PSO, RA, and SLE, respectively. The binding capacities and cell surface densities of MICA alleles were assessed by utilizing stable cell lines expressing four prominent Taiwanese MICA alleles. Our data revealed that MICA*010 was significantly associated with risks for PSO and RA (PFDR = 1.93 × 10-15 and 0.00112, respectively), while MICA*045 was significantly associated with predisposition to SLE (PFDR = 0.0002). On the other hand, MICA*002 was associated with protection against RA development (PFDR = 4.16 × 10-6), while MICA*009 was associated with a low risk for PSO (PFDR = 0.0058). MICA*002 exhibited the highest binding affinity for NKG2D compared to the other MICA alleles. Serum concentrations of soluble MICA were significantly elevated in SLE patients compared to healthy controls (p = 0.01). The lack of cell surface expression of the MICA*010 was caused by its entrapment in the endoplasmic reticulum. As a prevalent risk factor for PSO and RA, MICA*010 is deficient in cell surface expression and is unable to interact with NKG2D. Our study suggests that MICA alleles distinctively contribute to the pathogenesis of PSO, RA, and SLE in Taiwanese people.


Assuntos
Artrite Reumatoide , População do Leste Asiático , Lúpus Eritematoso Sistêmico , Humanos , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Lúpus Eritematoso Sistêmico/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo Genético
10.
Cancer Cell ; 42(4): 568-582.e11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490213

RESUMO

Major histocompatibility complex (MHC) class I antigen presentation deficiency is a common cancer immune escape mechanism, but the mechanistic implications and potential strategies to address this challenge remain poorly understood. Studying ß2-microglobulin (B2M) deficient mouse tumor models, we find that MHC class I loss leads to a substantial immune desertification of the tumor microenvironment (TME) and broad resistance to immune-, chemo-, and radiotherapy. We show that treatment with long-lasting mRNA-encoded interleukin-2 (IL-2) restores an immune cell infiltrated, IFNγ-promoted, highly proinflammatory TME signature, and when combined with a tumor-targeting monoclonal antibody (mAB), can overcome therapeutic resistance. Unexpectedly, the effectiveness of this treatment is driven by IFNγ-releasing CD8+ T cells that recognize neoantigens cross-presented by TME-resident activated macrophages. These macrophages acquire augmented antigen presentation proficiency and other M1-phenotype-associated features under IL-2 treatment. Our findings highlight the importance of restoring neoantigen-specific immune responses in the treatment of cancers with MHC class I deficiencies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-2/genética , Interleucina-2/imunologia , Neoplasias/genética , RNA Mensageiro , Microambiente Tumoral
11.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542184

RESUMO

Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/uso terapêutico , Apresentação de Antígeno , Neoplasias Pancreáticas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos , Antígenos de Neoplasias/uso terapêutico , Hormônios Pancreáticos , Linhagem Celular Tumoral
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542306

RESUMO

Common variants in the iron regulatory protein HFE contribute to systematically increased iron levels, yet the effects in the brain are not fully characterized. It is commonly believed that iron dysregulation is a key contributor to neurodegenerative disease due to iron's ability to catalyze reactive oxygen species production. However, whether HFE variants exacerbate or protect against neurodegeneration has been heavily debated. Some claim that mutated HFE exacerbates oxidative stress and neuroinflammation, thus predisposing carriers to neurodegeneration-linked pathologies. However, H63D HFE has also been shown to slow the progression of multiple neurodegenerative diseases and to protect against environmental toxins that cause neurodegeneration. These conflicting results showcase the need to further understand the contribution of HFE variants to neurodegenerative disease heterogeneity. Data from mouse models consistently demonstrate robust neuroprotection against toxins known to increase the risk of neurodegenerative disease. This may represent an adaptive, or hormetic, response to increased iron, which leaves cells better protected against future stressors. This review describes the current research regarding the contribution of HFE variants to neurodegenerative disease prognosis in the context of a hormetic model. To our knowledge, this is the first time that a hormetic model for neurodegenerative disease has been presented.


Assuntos
Doenças Neurodegenerativas , Camundongos , Animais , Doenças Neurodegenerativas/genética , Proteína da Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Hormese , Mutação , Ferro/metabolismo
13.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528347

RESUMO

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Humanos , Anticorpos Monoclonais/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Polissacarídeos , Receptores Fc/genética , Engenharia de Proteínas/métodos , Plantas/genética , Plantas/metabolismo
14.
Vet Microbiol ; 292: 110036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458048

RESUMO

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Assuntos
Infecções por Rotavirus , Doenças dos Suínos , Animais , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Membrana Celular , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/metabolismo
15.
Front Immunol ; 15: 1360022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469309

RESUMO

Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Suínos , Humanos , Animais , Porco Miniatura/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Haplótipos
16.
BMJ Open ; 14(3): e081926, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479735

RESUMO

OBJECTIVES: HFE haemochromatosis genetic variants have an uncertain clinical penetrance, especially to older ages and in undiagnosed groups. We estimated p.C282Y and p.H63D variant cumulative incidence of multiple clinical outcomes in a large community cohort. DESIGN: Prospective cohort study. SETTING: 22 assessment centres across England, Scotland, and Wales in the UK Biobank (2006-2010). PARTICIPANTS: 451 270 participants genetically similar to the 1000 Genomes European reference population, with a mean of 13.3-year follow-up through hospital inpatient, cancer registries and death certificate data. MAIN OUTCOME MEASURES: Cox proportional HRs of incident clinical outcomes and mortality in those with HFE p.C282Y/p.H63D mutations compared with those with no variants, stratified by sex and adjusted for age, assessment centre and genetic stratification. Cumulative incidences were estimated from age 40 years to 80 years. RESULTS: 12.1% of p.C282Y+/+ males had baseline (mean age 57 years) haemochromatosis diagnoses, with a cumulative incidence of 56.4% at age 80 years. 33.1% died vs 25.4% without HFE variants (HR 1.29, 95% CI: 1.12 to 1.48, p=4.7×10-4); 27.9% vs 17.1% had joint replacements, 20.3% vs 8.3% had liver disease, and there were excess delirium, dementia, and Parkinson's disease but not depression. Associations, including excess mortality, were similar in the group undiagnosed with haemochromatosis. 3.4% of women with p.C282Y+/+ had baseline haemochromatosis diagnoses, with a cumulative incidence of 40.5% at age 80 years. There were excess incident liver disease (8.9% vs 6.8%; HR 1.62, 95% CI: 1.27 to 2.05, p=7.8×10-5), joint replacements and delirium, with similar results in the undiagnosed. p.C282Y/p.H63D and p.H63D+/+ men or women had no statistically significant excess fatigue or depression at baseline and no excess incident outcomes. CONCLUSIONS: Male and female p.C282Y homozygotes experienced greater excess morbidity than previously documented, including those undiagnosed with haemochromatosis in the community. As haemochromatosis diagnosis rates were low at baseline despite treatment being considered effective, trials of screening to identify people with p.C282Y homozygosity early appear justified.


Assuntos
Delírio , Hemocromatose , Hepatopatias , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bancos de Espécimes Biológicos , Delírio/complicações , Genótipo , Hemocromatose/diagnóstico , Hemocromatose/epidemiologia , Hemocromatose/genética , Proteína da Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Homozigoto , Hepatopatias/complicações , Mutação , Estudos Prospectivos , 60682 , Idoso
17.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473913

RESUMO

Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment.


Assuntos
Alcoolismo , Ferroptose , Microbioma Gastrointestinal , Hemocromatose , Sobrecarga de Ferro , Neoplasias Hepáticas , Humanos , Hemocromatose/genética , Hepcidinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alcoolismo/complicações , Inteligência Artificial , Fatores de Confusão Epidemiológicos , Antígenos de Histocompatibilidade Classe I/genética , Proteína da Hemocromatose/metabolismo , Proteínas de Membrana/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/genética , Ferritinas , Etanol , Neoplasias Hepáticas/complicações
18.
Adv Exp Med Biol ; 1444: 237-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467984

RESUMO

Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Polimorfismo Genético , Antígenos de Histocompatibilidade Classe II/genética , Haplótipos , Alelos
19.
Front Immunol ; 15: 1285049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455061

RESUMO

Background: Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods: Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results: Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion: Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.


Assuntos
Neoplasias , Microglobulina beta-2 , Humanos , Microglobulina beta-2/genética , Antígenos de Histocompatibilidade Classe I/genética , Imunoterapia , Antígenos HLA-A
20.
Zhonghua Yi Xue Za Zhi ; 104(11): 834-842, 2024 Mar 19.
Artigo em Chinês | MEDLINE | ID: mdl-38462359

RESUMO

Objective: To establish prediction models for human leukocyte antigen (HLA) haplotypes and HLA genotypes, and verify the prediction accuracy. Methods: The prediction models were established based on the characteristic of HLA haplotype inheritance and linkage disequilibrium (LD), as well as the invention patents and software copyrights obtained. The models include algorithm and reference databases such as HLA A-C-B-DRB1-DQB1 high-resolution haplotypes database, B-C and DRB1-DQB1 LD database, G group alleles table, and NMDP Code alleles table. The prediction algorithm involves data processing, comparison with reference data, filtering results, probability calculation and ranking, confidence degree estimation, and output of prediction results. The accuracy of the predictions was verified by comparing them with the correct results, and the relationship between prediction accuracy and the probability distribution and confidence degree of the predicted results was analyzed. Results: The HLA haplotypes and genotypes prediction models were established. The prediction algorithm included the prediction of A-C-B-DRB1-DQB1 haplotypes according to HLA-A, B, DRB1, C, DQB1 genotypes, the prediction of C and DQB1 high-resolution results according to A, B and DRB1 high-resolution results, and the prediction of A, B, DRB1, C and DQB1 high resolution results according to the A, B and DRB1 intermediate or low resolution results. Validation results of "Predicting A-C-B-DRB1-DQB1 haplotypes basing on HLA-A, B, DRB1, C, DQB1 genotypes" model: for 787 data, the accuracy was 94.0% (740/787) with 740 correct predictions, 34 incorrect predictions, and 13 instances with no predicted results. For 847 data, the accuracy was 100% (847/847). The 2 411 and 2 594 haplotype combinations predicted from 787 and 847 data were grouped according to confidence degree, the accuracy was 100% (48/48, 114/114) for a confidence degree of 1, 96.2% (303/315) and 97.8% (409/418) for a confidence degree of 2 respectively. Validation results of "Predicting A, B, DRB1 and C, DQB1 high-resolution genotypes basing on HLA-A, B, DRB1 high, intermediate, or low resolution genotypes" model: when predicting C and DQB1 high resolution genotypes basing on A, B, and DRB1 high resolution genotypes, 89.3% (1 459/1 634) of the predictions were correct. The accuracy for the top 2 predicted probability (GPP) ranking was 79.2% (1 156/1 459), and for the top 10, it was 95.0% (1 386/1 459). Furthermore, when GPP≥90% and GPP 50%-90%, the prediction accuracy was 81.3% (209/257) and 72.8% (447/614) respectively. The accuracy of predicting C and DQB1 high resolution genotypes basing on the results of A, B, and DRB1 high resolution genotypes from the China Marrow Donor Program was 87.0% (20/23). The accuracy of predicting A, B, DRB1, C, and DQB1 high resolution genotypes basing on the results of A, B, and DRB1 intermediate or low-resolution genotypes was 70.0% (7/10) and 52.5% (21/40) respectively. When predicting whether the patient is likely to have a HLA 10/10 matched donor, the accuracy of the top 2 GPP combinations with a proportion of ≥50% was 85.7% (6/7). Conclusions: When using A, B, DRB1, C, DQB1 genotypes to predict A-C-B-DRB1-DQB1 haplotype combinations, the results with a confidence degree of 1 and 2 are reliable. When predicting C and DQB1 genotypes according to A, B and DRB1 genotypes, the top 10 results ranked by GPP are reliable, and the top 2 results with GPP≥50% are more reliable.


Assuntos
Antígenos HLA-B , Antígenos HLA-C , Humanos , Haplótipos , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Frequência do Gene , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Antígenos de Histocompatibilidade Classe I/genética , Genótipo , Antígenos HLA-A/genética , Alelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...